
CS–70 Discrete Mathematics for Computer Science, Spring 2010

Midterm 1 Solutions

Note: These solutions are not necessarily model answers. They are designed to be tutorial in nature, and
sometimes contain a little more explanation than an ideal solution. Also, bear in mind that there may be
more than one correct solution. The maximum number of points is 60. Comments in italics following the
solutions highlight some common errors or give explanations.

1. [Logic] [10 pts; +1 for each correct answer; −1 for each incorrect answer]

(a) • ∀n(Q(n) ⇒ P (n)) No 5pts
• ∀n(P (n) ∨ ¬Q(n)) No
• ¬∃n(P (n) ∧ ¬Q(n)) Yes [Equivalent to ∀n(¬P (n) ∨Q(n)).]
• ∀n(¬P (n) ⇒ ¬Q(n)) No
• Q(0) ∧ ¬P (1) ∧ ∀n(Q(n) ⇒ Q(n + 2)) ∧ ∀n(P (n + 2) ⇒ P (n)) No

[This proposition says that, for all even n, Q(n) is true, and for all odd n, P (n) is false, which
implies ∀n(P (n) ⇒ Q(n)). However, the reverse implication is not true, because, for example,
the original proposition does not imply that Q(0) is true.]

(b) • ∃m∀nR(m, n) No 5pts
• ∀m∃nR(n, m) Yes [interchanges roles of m and n]
• ∀m∃nR(m, n) No
• ¬∃n∀m(¬R(m,n)) Yes
• ∀n∃m(R(n + m,n) ∨R(n−m,n)) Yes

[As m varies, the sets of values {n + m} and {n−m} cover all natural numbers.]

2. [Induction] [10 pts]

Base case:
∑1

i=1(3i)2 = 9 = 3
2(1)(1 + 1)(2 ∗ 1 + 1). 10pts

Induction hypothesis: For some k ≥ 1, assume
∑k

i=1(3i)2 = 3
2k(k + 1)(2k + 1).

Induction step:

k+1∑
i=1

(3i)2 = 9(k + 1)2 +
k∑

i=1

(3i)2

= 9(k + 1)2 +
3
2
k(k + 1)(2k + 1) by the induction hypothesis

=
3
2
(k + 1) (6(k + 1) + k(2k + 1))

=
3
2
(k + 1)(2k2 + 7k + 6)

=
3
2
(k + 1)(k + 2)(2k + 3)

=
3
2
(k + 1)(k + 2)(2(k + 1) + 1).

Thus, assuming the statement holds for some value k, we have shown it is also holds for the value k + 1.
This completes the induction step and hence the proof by induction.

Comments:



• Most students did well on this problem. The most common error was in the Induction Step; rather
than proving that P (k) =⇒ P (k + 1) (which is what you need to do), some students assumed that
P (k + 1) was true and derived P (k) from that, but did not describe why their argument could be
reversed to show that P (k + 1) could also be derived from P (k). To clarify: If you start by assuming∑k+1

i=1 (3i)2 = 3
2(k+1)(k+2)(2(k+1)+1), and then rewrite the left-hand side, using your induction

hypothesis, and simplify both sides to yield 0 = 0, then your proof would be correct provided you state
that ”because each step can be inverted, each implication goes in both directions.” If you did not state
that your proof that P (k + 1) =⇒ P (k) could be inverted to show that P (k) =⇒ P (k + 1), you
automatically lost (at least) three points.

• Quite a few students gave the Induction Hypothesis “∀k,
∑k

i=1(3i)2 = 3
2k(k + 1)(2k + 1).” This is a

very serious error, and invalidates the entire induction argument. (If this is your induction hypothesis,
there is nothing to prove for the induction step!!!!) Partial credit was given if the rest of the proof was
alright.

• Students who structured their proof correctly, but then got into trouble in the algebraic manipulation
got few points taken off: 1 point if the student wrote something like ”I can’t get the algebra to work out,
but this expression should be equivalent to (k+1)(k+2)(2(k+1)+1). Students who got really bogged
down in the manipulation, and then just crossed stuff out, and wrote = (k + 1)(k + 2)(2(k + 1) + 1),
were also penalized minimally. Students who clearly realized that they had made algebraic errors, but
then tried to cover them up and ended up writing obviously false statements,such as n + (n + 1) =
(n + 1)(n + 2)(2(n + 1) + 1), were deducted more heavily. (In life, as in academia, being open about
one’s past mistakes is wonderful, making honest mistakes is perfectly fine, but actively trying to hide
one’s mistakes is a pain for everyone.)

3. [Stable marriages] [10 pts]

(a) The execution of the (traditional) Propose-and-Reject Algorithm is as follows:

Day 1
Women Proposals

A 1
B
C 2 3
D 4

Day 2
Women Proposals

A 1
B
C 2
D 3 4

Day 3
Women Proposals

A 4 1
B
C 2
D 3

Day 4
Women Proposals

A 4
B 1
C 2
D 3

The final pairing is {(1, B), (2, C), (3, D), (4, A)}.

Almost all people got this right. Partial credit was given to solutions showing an understanding of the
algorithm, which however did not get the correct pairing due to careless mistakes.

(b) Since the pairing in part (a) is male optimal, Man 4 can at best be paired with Woman A under any
stable pairing, so there is no stable pairing in which Man 4 is paired with Woman D.

Less than half of the people got this right. A symmetric argument using female pessimality was also
accepted. However, complicated arguments using three to four deductions to show a rogue pair re-
ceived at most one point. Any argument about the execution of the Propose-and-Reject algorithm (e.g.
Improvement Lemma or rejection on Day 2) received no points, because the algorithm finds only male
optimal or female optimal pairings and so says nothing about other possible stable pairings.

(c) Since the pairing in part (a) is female pessimal, Woman B can at worst be paired with Man 1 under
any stable pairing, so there is no stable pairing in which Woman B is paired with Man 3.

Similar remarks to those for part (b) also apply here. A few people computed as well the female optimal
(male pessimal) pairing, and argued that Man 1 must be paired with Woman B in any stable pairing.
This argument using the lattice of stable pairings was also accepted.



4. [Modular arithmetic] [13 pts]

(a) For any integers k, m, since an odd number raised to any positive integer power is odd, and an even 2pts
number raised to any positive integer power is even (or by Fermat’s Little Theorem), mk = m mod 2.
Hence n = n5 = 1335 + 1105 + 845 + 275 = 133 + 110 + 84 + 27 = 1 + 0 + 0 + 1 = 0 mod 2.

(b) By Fermat’s Little Theorem, km = km mod 2 mod 3, and thus n = n5 = 133 + 110 + 84 + 27 = 4pts
1 + 2 + 0 + 0 = 0 mod 3.

(c) By Fermat’s Little Theorem, km = km mod 4 mod 5, and thus n = n5 = 133 + 110 + 84 + 27 = 4pts
3 + 0 + 4 + 2 = 4 mod 5.

(d) n = 144. To see this, note from parts (a), (b) and (c) that n = 0 mod 2, n = 0 mod 3, and n = 3pts
4 mod 5. This uniquely determines n mod (2 ∗ 3 ∗ 5), i.e., we know that n = 24 mod 30 (the unique
value mod 30 satisfying all three properties). Additionally, we are told that n < 170, and since
n5 > 1335 we also know that n > 133. But there is just one value of n in this range that is equal
to 24 mod 30, namely n = 144.

Comments:

• In parts (b) and (c), several people correctly computed 1335 + 1105 + 845 + 275 mod 3, 5, but then
didn’t see why n = n5 mod 3, 5. Two points were taken off for this.

• Several people got incorrect answers for parts (a), (b) or (c), and then mysteriously gave the correct
answer n = 144 for part (d). This received 0 points for part (d): if, for example, you said that
n = 1 mod 2 for part (a), and then n = 144 for part (d), you should at least have noticed that these
two answers are conflicting.

• People who gave incorrect answers for parts (a), (b) or (c), but gave an answer for part (d) that was
consistent with their answers for these parts received full credit for part (d).

• Quite a few students gave the answer n = 24, which agrees with the correct answers for parts (a), (b)
and (c). This received partial credit (for understanding the modular arithmetic component, but failing
to observe that n > 133).

5. [Fermat’s Little Theorem] [7 pts]

(a) Fermat’s Little Theorem says that, for any prime p and integer a ∈ {1, 2, . . . , p− 1}, we have ap−1 = 2pts
1 mod p. Since ordp(a) is defined as the least i such that ai = 1 mod p, and since i = p− 1 satisfies
this condition, we must have ordp(a) ≤ p− 1.
Most people got this right, though many overlooked the very simple argument above. One point was
awarded just for stating Fermat’s Little Theorem.

(b) Suppose for the sake of contradiction that ordp(a) does not divide p − 1. Then, writing i = ordp(a), 5pts
we have p − 1 = ki + `, where 0 < ` < i. (Here ` is the remainder; it must be non-zero since i does
not divide p− 1.)
By Fermat’s Little Theorem we have ap−1 = 1 mod p, and hence (with all arithmetic mod p)

1 = ap−1 = aki+` = akia` = a` mod p.

(In the last step here we used the fact that ai = 1 mod p since i = ordp(a).)
But this is a contradiction since 1 ≤ ` < i and i is the least value ≥ 1 for which ai = 1 mod p.
Hence our original assumption that ordp(a) does not divide p− 1 must be false.
The overwhelming majority of students missed this part entirely. The typical errors were: (1) Not
realizing that, if you want to prove by contradiction that x divides y, you need to start by assuming
(for contradiction) that y = kx + ` for a non-zero remainder ` with ` < x. (2) Claiming that if
ai = aj mod p then i = j mod p (or the contrapositive: that if i 6= j mod p then ai 6= aj mod p);
this implication is patently false (check this!).



6. [Secret sharing] [10 pts]
Summary: The sum P (0) + Q(0) and the product P (0) · Q(0) of the secrets are recovered using
Lagrange interpolation to find the polynomials P (x)+Q(x) and P (x) ·Q(x) from the given data. The
secrets are obtained from the sum and product by solving a quadratic equation.

(a) P (x)+Q(x) is a polynomial of degree 2 and passes through the points (i, P (i)+Q(i)). (Note that we
know all of these points exactly from the given data, because to compute P (i) + Q(i) we don’t need
to know which value is P (i) and which is Q(i).) We use the three points (1, 5), (2, 5), (3, 0) and write
the Lagrange interpolation formula:

P (x) + Q(x) = 5 ·∆1(x) + 5 ·∆2(x) + 0 ·∆3(x) (1)

The polynomials ∆i are given by:

∆1(x) =
(x− 2)(x− 3)
(1− 2)(1− 3)

= 4(x2 − 5x + 6)

∆2(x) =
(x− 1)(x− 3)
(2− 1)(2− 3)

= 6(x2 − 4x + 3)

We compute P (x) + Q(x) by substituting the expressions for ∆i in the Lagrange interpolation for-
mula (1):

P (x) + Q(x) = 5 ·∆1(x) + 5 ·∆2(x)
= −1(x2 − 5x + 6) + 2(x2 − 4x + 3) = x2 − 3x

The sum of the secrets P (0) + Q(0) is therefore equal to 0.

(b) P (x) ·Q(x) is a polynomial of degree 3 and passes through the points (i, P (i) ·Q(i)). We use the four
points (1, 0), (2, 4), (4, 0), (5, 0) and write the Lagrange interpolation formula:

P (x) ·Q(x) = 0 ·∆1(x) + 4 ·∆2(x) + 0 ·∆4(x) + 0 ·∆5(x) (2)

Since three of these coefficients are zero, it is sufficient to compute the polynomial ∆2:

∆2(x) =
(x− 1)(x− 4)(x− 5)
(2− 1)(2− 4)(2− 5)

= 6(x3 − 3x2 + x + 1)

We compute P (x) · Q(x) by substituting the expression for ∆2 in the Lagrange interpolation for-
mula (2):

P (x) ·Q(x) = 4 ·∆2(x)
= 3x3 + 5x2 + 3x + 3

The product of the secrets P (0) ·Q(0) is therefore equal to 3.

(c) The square of the difference of the secrets is given by (Q(0)−P (0))2 = (P (0) + Q(0))2 − 4 ·P (0) ·
Q(0) = 2. We observe that the two solutions to x2 = 2 mod 7 are ±3 hence Q(0) − P (0) = ±3
mod 7. Given that Q(0) > P (0) we find that the secrets are P (0) = 2 and Q(0) = 5.

Many students tried a pattern matching approach to this question, trying to guess the linear polynomial
P (x); once P (x) is known, the rest of the problem of course becomes trivial. While full credit was awarded
to such solutions if the secrets were found correctly, this method would not be feasible for larger fields or
higher degree polynomials. (E.g., suppose P (x) and Q(x) had degrees 5 and 7 over GF (107)). The key
idea that P (i) + Q(i) and P (i).Q(i) can be computed given (P (i), Q(i)) OR (Q(i), P (i)) as they are
symmetric functions (do not depend on order) was missed by many students.


